SCHMELZMETALL JOE ADDITIVE

data sheet of additively manufactured components made of

HOVADUR® CCZ

PRINT YOUR IDEAS

SCHMELZMETALL

Material data sheet

of additively manufactured components made of

HOVADUR® CCZ

1. Material Description

HOVADUR® CCZ is a thermally precipitation hardenable copper alloy.

The material is characterized by a particularly high electrical and thermal conductivity in the age-hardened state with still good hardness and good softening resistance.

2. Designations

Material designation SCHMELZMETALL: Hovadur® CCZ
Material designation, EN standards: CuCr1Zr
Material number, EN standards: CW106C
Material number, former DIN standards: 2.1293 (CuCrZr)

Material number, UNS-System (ASTM): C18400

3. Powder Material Used

Powder designation: HOVADUR® CCZ

Batch purity/use condition: 2A (used powder of one batch) Particle size distribution in μ m: $d_{10} = 20-30$; $d_{50} = 35-45$; $d_{90} = 50-60$

Measuring according to: EN ISO 13320

4. Post-Processing Performed

Separation process: Sawing

Thermal post-treatment: Solution annealing and precipitation hardening

Specimen preparation:

Tensile specimen ($\theta = 0^\circ$; $\theta = 45^\circ$; $\theta = 90^\circ$) Turning to B10 x 50 (DIN 50125)

Density cube Milling off the edge layer by 0,5 mm

Hardness and conductivity sample Grinding of the test surface

SCHMELZMETALL

5. Heat Treatment Options

WB 1 = Heat Treatment "Best Compromise"

WB 2 = Heat Treatment "Best Hardness"

WB 3 = Heat Treatment "Best Electrical Conductivity"

SCHMELZMETALL

6. Material Properties

6.1 Chemical Composition (Percent By Weight)

Cu	Cr	Zr	Fe	Si	Others
Residual	0,5 – 1,2	0,03 – 0,3	≤ 0,08	≤ 0,1	≤ 0,2

6.2 Properties At 20°C, Heat Treated

Modulus of elasticity: Ε 125 000 MPa ·10-6·K-1 Coefficient of expansion ($\bar{x}_{(20^{\circ}\text{C}-300^{\circ}\text{C})}$): 17,0 Softening temperature: 500 °C $\mathsf{T}_{\mathsf{Soft}}$ Melting interval: $\mathsf{T}_{\mathsf{Melt}}$ 1075 - 1085 °C

Criteria		Orientation/ Reference *	Coding **	WB 1		WB 2		WB 3	
				x	S	x	S	x	S
0,2% Yield Strength, MPa	R _{p0,2}	θ = 0°	1_1_3	266	4	310	4	229	1
		θ = 45°	1_1_3	242	3	285	3	218	2
		θ = 90°	1_1_3	246	5	288	2	223	1
Tensile Strength, MPa	R _m	θ = 0°	1_1_3	382	3	420	2	355	1
		θ = 45°	1_1_3	364	5	396	1	343	6
		θ = 90°	1_1_3	348	4	378	2	332	1
Elongation A ₅₀ %	A ₅₀	θ = 0°	1_1_3	18	2	17	4	20	6
		θ = 45°	1_1_3	26	1	25	1	26	4
		θ = 90°	1_1_3	26	2	25	2	25	2
Hardness Brinell	HBW	2	1_1_3	116	2	131	0	110	5
Electr. Conductivity, MS/m ***	σ	2	1_1_3	51	0	48	0	52	0
Therm. Conductivity, W/(m·K) ****	λ	2	1_1_3	364	0	346	1	376	1
Spec. Weight, % (Archimedes)	P _{ar}	8,90 g/cm ³	1_2_5	x̄ ≥ 99,50 %					

Reference: 1 = measuring direction in buildup direction, 2 = measuring direction at right angles to buildup direction

Coding: x_y_z ; x = number of used machines, y = number of build jobs per machine, z = number of samples for a distinct property Measured with Fischer Sigmascope SMP10 @ 60 kHz

calculated from electrical conductivity